OGM-Based Real-Time Obstacle Detection and Avoidance Using a Multi-beam Forward Looking Sonar

Author:

Jin Han-SolORCID,Kang HyungjooORCID,Kim Min-GyuORCID,Lee Mun-JikORCID,Li Ji-HongORCID

Abstract

Autonomous underwater vehicles (AUVs) have a limited bandwidth for real-time communication, limiting rapid responses to unexpected obstacles. This study addressed how AUVs can navigate to a target without a pre-existing obstacle map by generating one in real-time and avoiding obstacles. This paper proposes using forward-looking sonar with an occupancy grid map (OGM) for real-time obstacle mapping and a potential field algorithm for avoiding obstacles. The OGM segments the map into grids, updating the obstacle probability of each cell for precise, quick mapping. The potential field algorithm attracts the AUV towards the target and uses repulsive forces from obstacles for path planning, enhancing computational efficiency in a dynamic environment. Experiments were conducted in coastal waters with obstacles to verify the real-time obstacle mapping and avoidance algorithm. Despite the high noise in sonar data, the experimental results confirmed effective obstacle mapping and avoidance. The OGM-based potential field algorithm was computationally efficient, suitable for single-board computers, and demonstrated proper parameter adjustments through two distinct scenarios. The experiments also identified some of challenges, such as dynamic changes in detection rates, propulsion bubbles, and changes in repulsive forces caused by sudden obstacles. An enhanced algorithm to address these issues is currently under development.

Funder

Korea Institute of Marine Science and Technology promotion

Korea Coast Guard

Ministry of Oceans and Fisheries

Publisher

The Korean Society of Ocean Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3