State-Level Mapping of the Road Transport Network from Aerial Orthophotography: An End-to-End Road Extraction Solution Based on Deep Learning Models Trained for Recognition, Semantic Segmentation and Post-Processing with Conditional Generative Learning

Author:

Cira Calimanut-Ionut1ORCID,Manso-Callejo Miguel-Ángel1ORCID,Alcarria Ramón1ORCID,Bordel Sánchez Borja2ORCID,González Matesanz Javier3

Affiliation:

1. Departamento de Ingeniería Topográfica y Cartografía, E.T.S.I. en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain

2. Departamento de Sistemas Informáticos, E.T.S.I. de Sistemas Informáticos, Universidad Politécnica de Madrid, C/Alan Turing, s/n, 28031 Madrid, Spain

3. Subdirección General de Geodesia y Cartografía, Dirección General del Instituto Geográfico Nacional, C/Gral. Ibáñez de Ibero 3, 28003 Madrid, Spain

Abstract

Most existing road extraction approaches apply learning models based on semantic segmentation networks and consider reduced study areas, featuring favorable scenarios. In this work, an end-to-end processing strategy to extract the road surface areas from aerial orthoimages at the scale of the national territory is proposed. The road mapping solution is based on the consecutive execution of deep learning (DL) models trained for ① road recognition, ② semantic segmentation of road surface areas, and ③ post-processing of the initial predictions with conditional generative learning, within the same processing environment. The workflow also involves steps such as checking if the aerial image is found within the country’s borders, performing the three mentioned DL operations, applying a p=0.5 decision limit to the class predictions, or considering only the central 75% of the image to reduce prediction errors near the image boundaries. Applying the proposed road mapping solution translates to operations aimed at checking if the latest existing cartographic support (aerial orthophotos divided into tiles of 256 × 256 pixels) contains the continuous geospatial element, to obtain a linear approximation of its geometry using supervised learning, and to improve the initial semantic segmentation results with post-processing based on image-to-image translation. The proposed approach was implemented and tested on the openly available benchmarking SROADEX dataset (containing more than 527,000 tiles covering approximately 8650 km2 of the Spanish territory) and delivered a maximum increase in performance metrics of 10.6% on unseen, testing data. The predictions on new areas displayed clearly higher quality when compared to existing state-of-the-art implementations trained for the same task.

Funder

AEI

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference73 articles.

1. (2023, March 22). Instituto Geográfico Nacional (Spain) Especificaciones de Producto de Redes e Infraestructuras del Transporte del Instituto Geográfico Nacional. Available online: http://www.ign.es/resources/IGR/Transporte/20160316_Espec_RT_V0.5.pdf.

2. Bengio, Y., and LeCun, Y. (2015, January 7–9). Very Deep Convolutional Networks for Large-Scale Image Recognition. Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA. Conference Track Proceedings.

3. Navab, N., Hornegger, J., Wells, W.M., and Frangi, A.F. (2015, January 5–9). U-Net: Convolutional Networks for Biomedical Image Segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany.

4. Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A.A. (2017, January 21–26). Image-to-Image Translation with Conditional Adversarial Networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA.

5. RoadNet: Learning to Comprehensively Analyze Road Networks in Complex Urban Scenes From High-Resolution Remotely Sensed Images;Liu;IEEE Trans. Geosci. Remote Sens.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3