Improving Road Segmentation by Combining Satellite Images and LiDAR Data with a Feature-Wise Fusion Strategy

Author:

Ozturk Ozan1ORCID,Isik Mustafa Serkan1ORCID,Kada Martin2,Seker Dursun Zafer1

Affiliation:

1. Department of Geomatics Engineering, Civil Engineering Faculty, Istanbul Technical University, Istanbul 34469, Türkiye

2. Methods of Geoinformation Science, Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, 10553 Berlin, Germany

Abstract

Numerous deep learning techniques have been explored in pursuit of achieving precise road segmentation; nonetheless, this task continues to present a significant challenge. Exposing shadows and the obstruction of objects are the most important difficulties associated with road segmentation using optical image data alone. By incorporating additional data sources, such as LiDAR data, the accuracy of road segmentation can be improved in areas where optical images are insufficient to segment roads properly. The missing information in spectral data due to the object blockage and shadow effect can be compensated by the integration of 2D and 3D information. This study proposes a feature-wise fusion strategy of optical images and point clouds to enhance the road segmentation performance of a deep learning model. For this purpose, high-resolution satellite images and airborne LiDAR point cloud collected over Florida, USA, were used. Eigenvalue-based and geometric 3D property-based features were calculated based on the LiDAR data. These optical images and LiDAR-based features were used together to train, end-to-end, a deep residual U-Net architecture. In this strategy, the high-level features generated from optical images were concatenated with the LiDAR-based features before the final convolution layer. The consistency of the proposed strategy was evaluated using ResNet backbones with a different number of layers. According to the obtained results, the proposed fusion strategy improved the prediction capacity of the U-Net models with different ResNet backbones. Regardless of the backbone, all models showed enhancement in prediction statistics by 1% to 5%. The combination of optical images and LiDAR point cloud in the deep learning model has increased the prediction performance and provided the integrity of road geometry in woodland and shadowed areas.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3