Effect of Hard Coal Combustion in Water Steam Environment on Chemical Composition of Exhaust Gases

Author:

Ciupek BartoszORCID,Gołoś KarolORCID,Jankowski RadosławORCID,Nadolny ZbigniewORCID

Abstract

This academic paper revolves around the results of research on the change in emission parameters of the used heating boiler following the introduction of the overheated water stream, which had an impact on different emission parameters. The research results provide an insight into the hard coal combustion process, which had a significant impact on the change in the chemical composition of exhaust gases: it contributed to the lower mass concentration of the emitted dust and black carbon (PM) as well as nitric oxides (NOx) while, at the same time, playing a significant role in increasing the mass concentration of the emitted carbon oxide (CO). Two types of devices were used for the purposes of conducting the research at hand: a boiler with an automatic fuel feeding system with one combustion chamber and a boiler with a combustion chamber and an afterburning chamber fitted over it. Apart from the measurements of mass concentration of the emitted harmful substances, the research also focused on measurements of temperature inside the combustion and afterburning chambers, as well as the temperature of exhaust gases and their oxygen content. As part of the research, water steam was introduced to the combustion and afterburning chambers at the flow rate of 0.71 kg/h and 3.60 kg/h for boilers operating at a minimum power of 30% and a nominal power of 100%. An original steam generator with an overheated water steam production range from 0.71 kg/h to 3.60 kg/h was used to create and feed the water steam. The efficiency of the combustion process was calculated using the obtained results for each operating configuration of a given boiler.

Funder

Politechnika Poznańska

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3