Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of Intelligent Techniques

Author:

Khalid Salman1,Song Jinwoo1,Raouf Izaz1,Kim Heung Soo1ORCID

Affiliation:

1. Department of Mechanical, Robotics, and Energy Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea

Abstract

Thermal power plants (TPPs) are critical to supplying energy to society, and ensuring their safe and efficient operation is a top priority. To minimize maintenance shutdowns and costs, modern TPPs have adopted advanced fault detection and diagnosis (FDD) techniques. These FDD approaches can be divided into three main categories: model-based, data-driven-based, and statistical-based methods. Despite the practical limitations of model-based methods, a multitude of data-driven and statistical techniques have been developed to monitor key equipment in TPPs. The main contribution of this paper is a systematic review of advanced FDD methods that addresses a literature gap by providing a comprehensive comparison and analysis of these techniques. The review discusses the most relevant FDD strategies, including model-based, data-driven, and statistical-based approaches, and their applications in enhancing the efficiency and reliability of TPPs. Our review highlights the novel and innovative aspects of these techniques and emphasizes their significance in sustainable energy development and the long-term viability of thermal power generation. This review further explores the recent advancements in intelligent FDD techniques for boilers and turbines in TPPs. It also discusses real-world applications, and analyzes the limitations and challenges of current approaches. The paper highlights the need for further research and development in this field, and outlines potential future directions to improve the safety, efficiency, and reliability of intelligent TPPs. Overall, this review provides valuable insights into the current state-of-the-art in FDD techniques for TPPs, and serves as a guide for future research and development.

Funder

Korea Ministry of SMEs and Startups

BK-21 four

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3