Flue Gas Recirculation System for Biomass Heating Boilers—Research and Technical Applications for Reductions in Nitrogen Oxides (NOx) Emissions

Author:

Ciupek Bartosz1ORCID,Urbaniak Rafał2,Kinalska Dobrosława1,Nadolny Zbigniew3ORCID

Affiliation:

1. Department of Fuels and Renewable Energy, Faculty of Environmental Engineering and Energy, Institute of Thermal Energy, Poznan University of Technology, 60-965 Poznan, Poland

2. Department of Mechanics and Mechanical Engineering, Polytechnic Faculty, University of Kalisz, 62-800 Kalisz, Poland

3. Department of High Voltage and Electrotechnical Materials, Faculty of Environmental Engineering and Energy, Institute of Power Engineering, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

The paper discusses the results of investigations of the change in thermal and emission-related parameters of a heating boiler fueled with biomass after a modification with a proprietary flue gas recirculation system made for this type of equipment. The results provide insight into the combustion process with a multistage flue gas recirculation that materially affected the boiler operation: a reduction in the mass concentration of nitrogen oxides (NOx) by reducing the combustion temperature. The authors also observed a reduction in the emission of particulate matters (PM) and carbon monoxide (CO). For the investigations, the authors used a heating boiler fitted with an automatic fuel feed (timber pellets) and a proprietary patented flue gas recirculation system (Polish patent Pat. 243395) for low power solid fuel heating boilers. Aside from the measurement of the mass concentration of the emitted pollutants, the research focused on the measurements of the temperature inside the combustion chamber, the temperature of the flue gas and the level of oxygen in the flue gas. The aim of the research was to confirm the validity of using the flue gas recirculation technique to reduce emissions of harmful substances from biomass heating boilers, as a technique not previously used for this group of devices. Moreover, the aim of the research was to test an original engineering solution, in the form of a flue gas distribution valve, and investigate its effect on reducing NOx emissions and improving other thermal and emission parameters of the boiler. The obtained research results confirm the validity of the chosen actions and provide a positive premise for the practical use of this technology in solid fuel heating boilers.

Funder

Poznan University of Technology’s financial resources for statutory activity

University of Kalisz’s financial resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3