Abstract
Copper-to-copper (Cu-to-Cu) direct bonding is a promising approach to replace traditional solder joints in three-dimensional integrated circuits (3D ICs) packaging. It has been commonly conducted at a temperature over 300 °C, which is detrimental to integrated electronic devices. In this study, highly (111)-oriented nanotwinned (nt) Cu films were fabricated and polished using chemical mechanical planarization (CMP) and electropolishing. We successfully bonded and remained columnar nt-Cu microstructure at a low temperature of 150 °C thanks to the rapid diffusion of Cu on (111) surface. We employed a new microstructural method to characterize quantitatively the interfacial bonding quality using cross-sectional and plan-view microstructural analyses. We discovered that CMP nt-Cu bonding quality was greater than that of electropolished nt-Cu ones. The CMP nt-Cu films possessed extremely low surface roughness and were virtually free of pre-existing interface voids. Thus, the bonding time of such CMP nt-Cu films could be significantly shortened to 10 min. We expect that these findings may offer a pathway to reduce the thermal budget and manufacturing cost of the current 3D ICs packaging technology.
Funder
Ministry of Science and Technology, Taiwan
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献