A Deep Learning-Based Method for Extracting Standing Wood Feature Parameters from Terrestrial Laser Scanning Point Clouds of Artificially Planted Forest

Author:

Shen XingyuORCID,Huang Qingqing,Wang Xin,Li Jiang,Xi BenyeORCID

Abstract

The use of 3D point cloud-based technology for quantifying standing wood and stand parameters can play a key role in forestry ecological benefit assessment and standing tree cultivation and utilization. With the advance of 3D information acquisition techniques, such as light detection and ranging (LiDAR) scanning, the stand information of trees in large areas and complex terrain can be obtained more efficiently. However, due to the diversity of the forest floor, the morphological diversity of the trees, and the fact that forestry is often planted as large-scale plantations, efficiently segmenting the point cloud of artificially planted forests and extracting standing wood feature parameters remains a considerable challenge. An effective method based on energy segmentation and PointCNN is proposed in this work to address this issue. The network is enhanced for learning point cloud features by geometric feature balance model (GFBM), enabling the efficient segmentation of tree point clouds from forestry point cloud data collected by terrestrial laser scanning (TLS) in outdoor environments. The 3D Forest software is then used to obtain single wood point cloud after semantic segmentation, and the extracted single wood point cloud is finally employed to extract standing wood feature parameters using TreeQSM. The point cloud semantic segmentation method is the most important part of our research. According to our findings, this method can segment datasets of two different artificially planted woodland point clouds with an overall accuracy of 0.95 and a tree segmentation accuracy of 0.93. When compared with the manual measurements, the root-mean-square error (RMSE) for tree height in the two datasets are 0.30272 and 0.21015 m, and the RMSEs for the diameter at breast height are 0.01436 and 0.01222 m, respectively. Our method is a robust framework based on deep learning that is applicable to forestry for extracting the feature parameters of artificially planted trees. It solves the problem of segmenting tree point clouds in artificially planted trees and provides a reliable data processing method for tree information extraction, trunk shape analysis, etc.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3