Plant Population Classification Based on PointCNN in the Daliyabuyi Oasis, China

Author:

Li Dinghao12,Shi Qingdong12,Peng Lei12,Wan Yanbo12

Affiliation:

1. College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China

2. Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China

Abstract

Populus euphratica and Tamarix chinensis hold significant importance in wind prevention, sand fixation, and biodiversity conservation. The precise extraction of these species can offer technical assistance for vegetation studies. This paper focuses on the Populus euphratica and Tamarix chinensis located within Daliyabuyi, utilizing PointCNN as the primary research method. After decorrelating and stretching the images, deep learning techniques were applied, successfully distinguishing between various vegetation types, thereby enhancing the precision of vegetation information extraction. On the validation dataset, the PointCNN model showcased a high degree of accuracy, with the respective regular accuracy rates for Populus euphratica and Tamarix chinensis being 92.106% and 91.936%. In comparison to two-dimensional deep learning models, the classification accuracy of the PointCNN model is superior. Additionally, this study extracted individual tree information for the Populus euphratica, such as tree height, crown width, crown area, and crown volume. A comparative analysis with the validation data attested to the accuracy of the extracted results. Furthermore, this research concluded that the batch size and block size in deep learning model training could influence classification outcomes. In summary, compared to 2D deep learning models, the point cloud deep learning approach of the PointCNN model exhibits higher accuracy and reliability in classifying and extracting information for poplars and tamarisks. These research findings offer valuable references and insights for remote sensing image processing and vegetation study domains.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3