Study on Individual Tree Segmentation of Different Tree Species Using Different Segmentation Algorithms Based on 3D UAV Data

Author:

Liu Yao1,You Haotian12ORCID,Tang Xu1ORCID,You Qixu1,Huang Yuanwei1,Chen Jianjun1

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, No. 12 Jian’gan Road, Guilin 541006, China

2. Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, No. 12 Jian’gan Road, Guilin 541004, China

Abstract

Individual structural parameters of trees, such as forest stand tree height and biomass, serve as the foundation for monitoring of dynamic changes in forest resources. Individual tree structural parameters are closely related to individual tree crown segmentation. Although three-dimensional (3D) data have been successfully used to determine individual tree crown segmentation, this phenomenon is influenced by various factors, such as the (i) source of 3D data, (ii) the segmentation algorithm, and (iii) the tree species. To further quantify the effect of various factors on individual tree crown segmentation, light detection and ranging (LiDAR) data and image-derived points were obtained by unmanned aerial vehicles (UAVs). Three different segmentation algorithms (PointNet++, Li2012, and layer-stacking segmentation (LSS)) were used to segment individual tree crowns for four different tree species. The results show that for two 3D data, the crown segmentation accuracy of LiDAR data was generally better than that obtained using image-derived 3D data, with a maximum difference of 0.13 in F values. For the three segmentation algorithms, the individual tree crown segmentation accuracy of the PointNet++ algorithm was the best, with an F value of 0.91, whereas the result of the LSS algorithm yields the worst result, with an F value of 0.86. Among the four tested tree species, the individual tree crown segmentation of Liriodendron chinense was the best, followed by Magnolia grandiflora and Osmanthus fragrans, whereas the individual tree crown segmentation of Ficus microcarpa was the worst. Similar crown segmentation of individual Liriodendron chinense and Magnolia grandiflora trees was observed based on LiDAR data and image-derived 3D data. The crown segmentation of individual Osmanthus fragrans and Ficus microcarpa trees was superior according to LiDAR data to that determined according to image-derived 3D data. These results demonstrate that the source of 3D data, the segmentation algorithm, and the tree species all have an impact on the crown segmentation of individual trees. The effect of the tree species is the greatest, followed by the segmentation algorithm, and the effect of the 3D data source. Consequently, in future research on individual tree crown segmentation, 3D data acquisition methods should be selected based on the tree species, and deep learning segmentation algorithms should be adopted to improve the crown segmentation of individual trees.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Guangxi Science and Technology Base and Talent Project

BaGuiScholars program of the provincial government of Guangxi

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3