Mapping the Growing Stem Volume of the Coniferous Plantations in North China Using Multispectral Data from Integrated GF-2 and Sentinel-2 Images and an Optimized Feature Variable Selection Method

Author:

Li XinyuORCID,Lin Hui,Long Jiangping,Xu Xiaodong

Abstract

Accurate measurement of forest growing stem volume (GSV) is important for forest resource management and ecosystem dynamics monitoring. Optical remote sensing imagery has great application prospects in forest GSV estimation on regional and global scales as it is easily accessible, has a wide coverage, and mature technology. However, their application is limited by cloud coverage, data stripes, atmospheric effects, and satellite sensor errors. Combining multi-sensor data can reduce such limitations as it increases the data availability, but also causes the multi-dimensional problem that increases the difficulty of feature selection. In this study, GaoFen-2 (GF-2) and Sentinel-2 images were integrated, and feature variables and data scenarios were derived by a proposed adaptive feature variable combination optimization (AFCO) program for estimating the GSV of coniferous plantations. The AFCO algorithm was compared to four traditional feature variable selection methods, namely, random forest (RF), stepwise random forest (SRF), fast iterative feature selection method for k-nearest neighbors (KNN-FIFS), and the feature variable screening and combination optimization procedure based on the distance correlation coefficient and k-nearest neighbors (DC-FSCK). The comparison indicated that the AFCO program not only considered the combination effect of feature variables, but also optimized the selection of the first feature variable, error threshold, and selection of the estimation model. Furthermore, we selected feature variables from three datasets (GF-2, Sentinel-2, and the integrated data) following the AFCO and four other feature selection methods and used the k-nearest neighbors (KNN) and random forest regression (RFR) to estimate the GSV of coniferous plantations in northern China. The results indicated that the integrated data improved the GSV estimation accuracy of coniferous plantations, with relative root mean square errors (RMSErs) of 15.0% and 19.6%, which were lower than those of GF-2 and Sentinel-2 data, respectively. In particular, the texture feature variables derived from GF-2 red band image have a significant impact on GSV estimation performance of the integrated dataset. For most data scenarios, the AFCO algorithm gained more accurate GSV estimates, as the RMSErs were 30.0%, 23.7%, 17.7%, and 17.5% lower than those of RF, SRF, KNN-FIFS, and DC-FSCK, respectively. The GSV distribution map obtained by the AFCO method and RFR model matched the field observations well. This study provides some insight into the application of optical images, optimization of the feature variable combination, and modeling algorithm selection for estimating the GSV of coniferous plantations.

Funder

Hunan Provincial Innovation Foundation For Postgraduate

National Key R&D Program of China project “Research of Key Technologies for Monitoring Forest Plantation Resources”

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3