Comparison of Three Active Microwave Models of Forest Growing Stock Volume Based on the Idea of the Water Cloud Model

Author:

Zhang Tian1ORCID,Sun Hao1ORCID,Xu Zhenheng1,Xu Huanyu1,Wu Dan12ORCID,Wu Ling13

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

2. Ningxia Data and Application Center of High Resolution Earth Observation System, Ningxia Institute of Remote Sensing Survey, Yinchuan 750021, China

3. Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China

Abstract

Forest growing stock volume (GSV) is an essential aspect of ecological carbon stock monitoring. The successive launches of spaceborne microwave satellites have provided a broader way to use microwave remote sensing to monitor forest accumulation. Currently, the inversion parameterization models of active microwave remote sensing stock volume mainly include the interferometric water cloud (IWCM), BIOMASAR, and Siberia. Among them, the IWCM introduces backscattering and coherence, the BIOMASAR model only introduces backscattering, and the Siberia model only introduces coherence. Although these three models combine the backscatter coefficient and coherence of SAR to estimate volume accumulation, the performance of the models has not been evaluated at the same time in the same area. Therefore, this article starts from the perspective of the three combinations of coherence and backscattering, relies on three models that do not require measured data, and evaluates the accuracy of the models’ overall inversion of GSV. In addition, we combine precipitation meteorological information, vegetation types, and seasonal variation to separately explore model performance. The comparison results show that the IWCM model is relatively stable in the process of stock volume inversion and is more sensitive to the vegetation types of coniferous and deciduous forests. The influence of seasons and precipitation on the model is weak, and the accuracy of the multi-time-series model is slightly improved. The Siberia model has a good storage volume inversion effect in this study area, but the multiple time series did not improve the model accuracy. The BIOMASAR model is simple, and its performance was slightly inferior in this study area. Precipitation can negatively affect BIOMASAR. The model results for multiple time series outperform those for single time. In summary, the stability of IWCM is more suitable for research with unknown information. The BIOMASAR model is simple, does not require coherence calculations, and is ideal for the estimation of large-scale national or world-level storage distributions. The Siberian model performs better in small regions and smaller spatiotemporal baselines.

Funder

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3