Modeling and Simulation of Hafnium Oxide RRAM Based on Oxygen Vacancy Conduction

Author:

Lin Jinfu,Liu HongxiaORCID,Wang ShulongORCID,Zhang Siyu

Abstract

The resistive memory has become one of the most promising new memory types because of its excellent performance, and HfO2 resistive material has attracted extensive attention. The conduction mechanism based on oxygen vacancy is widely recognized in the research of new nonvolatile memory. An RRAM electrothermal coupling model based on the oxygen vacancy conduction mechanism was constructed using COMSOL. The resistance process of the device is simulated by solving the coefficient partial differential equation, and the distribution of oxygen vacancy concentration, temperature, electric field, electric potential and other parameters in the dielectric layer at different voltages are obtained. The effects of temperature, dielectric layer thickness, top electrode thermal conductivity and conductive wire size on the resistance characteristics of the device are studied. It has guiding significance to further study the RRAM mechanism.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3