Physical model simulations of Hf oxide resistive random access memory device with a spike electrode structure

Author:

Yang FeiORCID,Liu Bingkun,He Zijian,Lou Shilong,Wang Wentao,Hu Bo,Li Duogui,Jiang Shuo

Abstract

Abstract Resistive memory has become an attractive new memory type due to its outstanding performance. Oxide-based resistive random access memory is one type of widely used memory whose resistance can be transformed by applying current or voltage. Memristors are widely used in various kinds of memories and neural morphological calculations. Therefore, it is of vital importance to understand the physical change mechanism of an internal memristor under stimulation to improve electrical properties of the memristor. In our studies, a device model based on Hf oxide was proposed, then completely processes of the forming, reset and set were simulated. Meantime, the generation and recombination of oxygen vacancies were considered in all the processes, making the simulation more practical. In addition, a spike electrode structure was applied, a gathering electric field can be generated in the oxide layer so that the improved device has a faster forming voltage, lower forming current and lower instantaneous power consumption in the ON state. Finally, the effects of spike electrode length on the forming process were studied, the research results reveal that a longer probe electrode can engage a lower forming voltage and accelerate the formation of conductive filaments.

Funder

University Natural Science Research Project of Anhui Province

National Natural Science Foundation of China

Anhui University

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3