Physicochemical, Mechanical, and Structural Properties of Bio-Active Films Based on Biological-Chemical Chitosan, a Novel Ramon (Brosimum alicastrum) Starch, and Quercetin

Author:

Pech-Cohuo Soledad Cecilia,Martín-López HéctorORCID,Uribe-Calderón Jorge,González-Canché Nancy Guadalupe,Salgado-Tránsito IvánORCID,May-Pat Alejandro,Cuevas-Bernardino Juan CarlosORCID,Ayora-Talavera TeresaORCID,Cervantes-Uc José ManuelORCID,Pacheco NeithORCID

Abstract

The properties of biological-chemical chitosan (BCh) films from marine-industrial waste and a non-conventional Ramon starch (RS) (Brosimum alicastrum) were investigated. Blended films of BCh/RS were prepared to a volume ratio of 4:1 and 1:4, named (BChRS-80+q, biological-chemical chitosan 80% v/v and Ramon starch, BChRS-20+q, biological-chemical chitosan 20% v/v and Ramon starch, both with quercetin), Films from commercial chitosan (CCh) and corn starch (CS), alone or blended (CChCS-80+q, commercial chitosan 80% v/v and corn starch, CChCS-20+q commercial chitosan 20% v/v and corn starch, both with quercetin) were also prepared for comparison purposes. Films were investigated for their physicochemical characteristics such as thickness, moisture, swelling, water-vapor permeability, and water solubility. In addition, their mechanical and structural properties were studied using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA) and Scanning Electron Microscopy (SEM) techniques. Antioxidant activity was evaluated as radical scavenging, and antimicrobial effect was also determined. The BCh and RS films presented similar tensile strength values compared with commercial biopolymers. Only films with chitosan presented antioxidant and antimicrobial activity. The FTIR spectra confirmed the interactions between functional groups of the biopolymers. Although, BChRS-80+q and BChRS-20+q films exhibited poor mechanical performance compared to their commercial counterparts, they showed good thermal stability, and improved antioxidant and antimicrobial activity in the presence of quercetin. BChRS-80+q and BChRS-20+q films have promising applications due to their biological activity and mechanical properties, based on a novel material that has been underutilized (Ramon starch) that does not compete with materials for human feeding and may be used as a coating for food products.

Funder

International Development Research Center Canada

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3