Enhancing Traceability of Italian Almonds through IR Spectroscopy and Chemometric Classifiers

Author:

Scappaticci Claudia1,Foschi Martina1ORCID,Plaku Alessio1,Biancolillo Alessandra1ORCID,D’Archivio Angelo Antonio1ORCID

Affiliation:

1. Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy

Abstract

Almonds are the seeds of the almond (Prunus Amygdalus) tree and are a nut consumed worldwide. The present study utilized the ATR FT-IR technique followed by a chemometric analysis to develop predictive models for determining the geographical origin of almonds from three regions in Southern Italy (Apulia, Calabria, and Sicily). IR spectra were collected on both the almond shell and the edible kernel to accurately characterize the three different geographical origins. The spectroscopic data obtained were processed using Soft Independent Modeling of Class Analogies (SIMCA) and Partial Least Squares Discriminant Analysis (PLS-DA). Both SIMCA and PLS-DA revealed that the shell spectra are more useful for assessing the geographical origin of samples. In particular, the PLS-DA model applied to these data achieved a 100% correct classification rate (on the external test set of individuals) for all the investigated classes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3