On-The-Fly Ambiguity Resolution Based on Double-Differential Square Observation

Author:

Wang Tengfei,Yao ZhengORCID,Lu Mingquan

Abstract

Global navigation systems provide worldwide positioning, navigation and navigation services. However, in some challenging environments, especially when the satellite is blocked, the performance of GNSS is seriously degraded or even unavailable. Ground based positioning systems, including pseudolites and Locata, have shown their potentials in centimeter-level positioning accuracy using carrier phase measurements. Ambiguity resolution (AR) is a key issue for such high precision positioning. Current methods for the ground based systems need code measurements for initialization and/or approximating linearization. If the code measurements show relatively large errors, current methods might suffer from convergence difficulties in ground based positioning. In this paper, the concept of double-differential square observation (DDS) is proposed, and an on-the-fly ambiguity resolution (OTF-AR) method is developed for ground based navigation systems using two-way measurements. An important advantage of the proposed method is that only the carrier phase measurements are used, and code measurements are not necessary. The clock error is canceled out by two-way measurements between the rover and the base stations. The squared observations are then differenced between different rover positions and different base stations, and a linear model is then obtained. The floating integer values are easy to compute via this model, and there is no need to do approximate linearization. In this procedure, the rover’s approximate coordinates are also directly obtained from the carrier measurements, therefore code measurements are not necessary. As an OTF-AR method, the proposed method relies on geometric changes caused by the rover’s motion. As shown by the simulations, the geometric diversity of observations is the key factor for the AR success rate. Moreover, the fine floating solutions given by our method also have a fairly good accuracy, which is valuable when fixed solutions are not reliable. A real experiment is conducted to validate the proposed method. The results show that the fixed solution could achieve centimeter-level accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3