An Improved Relative GNSS Tracking Method Utilizing Single Frequency Receivers

Author:

Yang Wenhao,Liu Yue,Liu Fanming

Abstract

The Global Navigation Satellite Systems (GNSS) becomes the primary choice for device localization in outdoor situations. At the same time, many applications do not require precise absolute Earth coordinates, but instead, inferring the geometric configuration information of the constituent nodes in the system by relative positioning. The Real-Time Kinematic (RTK) technique shows its efficiency and accuracy in calculating the relative position. However, when the cycle slips occur, the RTK method may take a long time to obtain a fixed ambiguity value, and the positioning result will be a “float” solution with a low meter accuracy. The novel method presented in this paper is based on the Relative GNSS Tracking Algorithm (Regtrack). It calculates the changes in the relative baseline between two receivers without an ambiguity estimation. The dead reckoning method is used to give out the relative baseline solution while a parallel running Extended Kalman Filter (EKF) method reinitiates the relative baseline when too many validation failures happen. We conducted both static and kinematic tests to assess the performance of the new methodology. The experimental results show that the proposed strategy can give accurate millimeter-scale solutions of relative motion vectors in adjacent two epochs. The relative baseline solution can be sub-decimeter level with or without the base station is holding static. In the meantime, when the initial tracking point and base station coordinates are precisely obtained, the tracking result error can be only 40 cm away from the ground truth after a 25 min drive test in an urban environment. The efficiency test shows that the proposed method can be a real-time method, the time that calculates one epoch of measurement data is no more than 80 ms and is less than 10 ms for best results. The novel method can be used as a more robust and accurate ambiguity free tracking approach for outdoor applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3