Kinematic ME-MAFA for Pseudolite Carrier-Phase Ambiguity Resolution in Precise Single-Point Positioning

Author:

Liu Kai,Guo Xiye,Yang Jun,Li Xiaoyu,Liu Changshui,Tang Yuqiu,Meng Zhijun,Yan Enqi

Abstract

Precise single-point positioning using carrier-phase measurements can be provided by the synchronized pseudolite system. The primary task of carrier phase positioning is ambiguity resolution (AR) with rapidity and reliability. As the pseudolite system is usually operated in the dense multipath environment, cycle slips may lead the conventional least-squares ambiguity decorrelation adjustment (LAMBDA) method to incorrect AR. A new AR method based on the idea of the modified ambiguity function approach (MAFA), which is insensitive to the cycle slips, is studied in this paper. To improve the model strength of the MAFA and to eliminate the influence of constant multipath biases on the time-average model in static mode, the kinematic multi-epoch MAFA (kinematic ME-MAFA) algorithm is proposed. A heuristic method for predicting the ‘float position’ corresponding to every Voronoi cell of the next epoch, making use of Doppler-based velocity information, is implemented to improve the computational efficiency. If the success rate is very close to 1, it is possible to guarantee reliable centimeter-level accuracy positioning without further ambiguity validation. Therefore, a computing method of the success rate for the kinematic ME-MAFA is proposed. Both the numerical simulations and the kinematic experiment demonstrate the feasibility of the new AR algorithm according to its accuracy and reliability. The accuracy of the horizontal positioning solution is better than 1.7 centimeters in our pseudolite system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3