Improving the Design of MEMS INS-Aided PLLs for GNSS Carrier Phase Measurement under High Dynamics

Author:

Zhang Tisheng,Ban Yalong,Niu Xiaoji,Guo Wenfei,Liu Jingnan

Abstract

The phase locked loop (PLL) bandwidth suffers a dilemma on carrier phase accuracy and dynamic stress tolerance in stand-alone global navigation satellite systems (GNSS) receivers. With inertial navigation system (INS) aiding, PLLs only need to tolerate aiding information error, instead of dynamic stress. To obtain accurate carrier phase under high dynamics, INS-aided PLLs need be optimally designed to reduce the impact of aiding information error. Typical micro-electro-mechanical systems (MEMS) INS-aided PLLs are implemented and tested under high dynamics. Tests using simulation show there is a step change in the aiding information at each integer second, which deteriorates the carrier phase accuracy. An improved structure of INS-aided PLLs is proposed to eliminate the step change impact. Even when the jerk is 2000 m/s3, the tracking error of the proposed INS-aided PLL is no more than 3°. Finally, the performances of stand-alone PLLs and INS-aided PLLs are compared using field tests. When the antenna jerk is 300 m/s3, the carrier phase error from the stand-alone PLLs significantly increased, while the carrier phase error from the MEMS INS-aided PLLs almost remained the same. Therefore, the proposed INS-aided PLLs can suppress tracking errors caused by noise and dynamic stress simultaneously under high dynamics.

Funder

National Key Research and Development Program of China

National High Technology Research and Develop Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ground-based high-precision local positioning using single-difference carrier phase and sparse ranging model;Third International Conference on Algorithms, Microchips, and Network Applications (AMNA 2024);2024-06-08

2. Evaluation of C/N0 raw observation positioning by smartphone based on indoor asynchronous pseudolite;Urban Informatics;2024-01-15

3. GNSS Carrier Phase Improvement Using a MEMS INS-Aided Long Coherent Architecture for High Precision Navigation;IEEE Transactions on Intelligent Transportation Systems;2024

4. Research on Rotation Modulation Algorithm of MEMS Inertial Navigation System;2023 2nd International Conference on Advanced Sensing, Intelligent Manufacturing (ASIM);2023-12-22

5. Improving GNSS carrier phase tracking using a long coherent integration architecture;GPS Solutions;2022-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3