Towards Autonomous Bridge Inspection: Sensor Mounting Using Aerial Manipulators

Author:

Ivanovic AntunORCID,Markovic LovroORCID,Car MarkoORCID,Duvnjak IvanORCID,Orsag MatkoORCID

Abstract

Periodic bridge inspections are required every several years to determine the state of a bridge. Most commonly, the inspection is performed using specialized trucks allowing human inspectors to review the conditions underneath the bridge, which requires a road closure. The aim of this paper was to use aerial manipulators to mount sensors on the bridge to collect the necessary data, thus eliminating the need for the road closure. To do so, a two-step approach is proposed: an unmanned aerial vehicle (UAV) equipped with a pressurized canister sprays the first glue component onto the target area; afterward, the aerial manipulator detects the precise location of the sprayed area, and mounts the required sensor coated with the second glue component. The visual detection is based on an Red Green Blue - Depth (RGB-D) sensor and provides the target position and orientation. A trajectory is then planned based on the detected contact point, and it is executed through the adaptive impedance control capable of achieving and maintaining a desired force reference. Such an approach allows for the two glue components to form a solid bond. The described pipeline is validated in a simulation environment while the visual detection is tested in an experimental environment.

Funder

Horizon 2020

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Direction for Swarm Robotic Path Planning Technique Using Potential Field Concepts and Particle Swarm Optimization;2023 15th International Conference on Innovations in Information Technology (IIT);2023-11-14

2. Multi-directional Interaction Force Control with an Aerial Manipulator Under External Disturbances;Autonomous Robots;2023-09-01

3. Magnetic Flux Servoing for Precise Localization Based on Gradient Tensor Contractions;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

4. Towards A Standardized Aerial Platform: ICUAS’22 Firefighting Competition;Journal of Intelligent & Robotic Systems;2023-07

5. Fully-actuated, corner contact aerial robot for inspection of hard-to-reach bridge areas;2023 International Conference on Unmanned Aircraft Systems (ICUAS);2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3