Abstract
Two-dimensional (2D) materials, such as molybdenum disulfide (MoS2) of the transition metal dichalcogenides family, are widely investigated because of their outstanding electrical and optical properties. However, not much of the 2D materials research completed to date has covered large-area structures comprised of high-quality heterojunction diodes. We fabricated a large-area n-MoS2/p-Si heterojunction structure by sulfurization of MoOx film, which is thermally evaporated on p-type silicon substrate. The n-MoS2/p-Si structure possessed excellent diode characteristics such as ideality factor of 1.53 and rectification ratio in excess of 104. Photoresponsivity and detectivity of the diode showed up to 475 mA/W and 6.5 × 1011 Jones, respectively, in wavelength ranges from visible to near-infrared. The device appeared also the maximum external quantum efficiency of 72%. The rise and decay times of optical transient response were measured about 19.78 ms and 0.99 ms, respectively. These results suggest that the sulfurization process for large-area 2D heterojunction with MoS2 can be applicable to next-generation electronic and optoelectronic devices.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献