Fractionation of Tilapia By-Product Protein Hydrolysate Using Multilayer Configuration of Ultrafiltration Membrane

Author:

Roslan Jumardi,Mustapa Kamal Siti Mazlina,Md. Yunos Khairul Faezah,Abdullah Norhafizah

Abstract

Production of small-sized peptides is significant because of their health benefits. Ultrafiltration (UF) membrane provides an effective fractionation of small-sized peptides on a large scale. Thus, the present study was aimed to evaluate the performance of multilayer UF membrane in fractionating tilapia fish by-product (TB) protein hydrolysate by observing the permeate flux, peptide transmission, and peptide distribution under different stirring speed, pH of feed solution, and salt concentration (NaCl). The fractionation process was carried out using a dead-end UF membrane system that consists of a stack of two membrane sheets with different (10/5 kDa) and similar (5/5 kDa) pore sizes in one device. The highest permeate flux (10/5 kDa–39.5 to 47.3 L/m2.h; 5/5 kDa– 15.8 to 20.3 L/m2.h) and peptide transmission (10/5 kDa–51.8 to 61.0%; 5/5 kDa–18.3 to 23.3%) for both multilayer membrane configurations were obtained at 3.0 bar, 600 rpm, pH 8, and without the addition of salt. It was also found that the permeates were enriched with small-size peptides (<500 Da) with a concentration of 0.58 g/L (10/5 kDa) and 0.65 g/L (5/5 kDa) as compared to large-sized peptides (500–1500 Da) with concentration of 0.56 g/L (10/5 kDa) and 0.36 g/L (5/5 kDa). This might indicate the enrichment of small-size peptides through the multilayer membrane which could potentially enhance the biological activity of the protein hydrolysate fraction.

Funder

Science Fund Research Grant from Ministry of Science, Technology, and Innovation (MOSTI), Malaysia.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3