Robust Scan Registration for Navigation in Forest Environment Using Low-Resolution LiDAR Sensors

Author:

Gupta Himanshu1ORCID,Andreasson Henrik1,Lilienthal Achim J.12ORCID,Kurtser Polina13

Affiliation:

1. Centre for Applied Autonomous Sensor Systems, Örebro University, 702 81 Örebro, Sweden

2. Perception for Intelligent Systems, Technical University of Munich, 80992 Munich, Germany

3. Department of Radiation Science, Radiation Physics, Umeå University, 901 87 Umeå, Sweden

Abstract

Automated forest machines are becoming important due to human operators’ complex and dangerous working conditions, leading to a labor shortage. This study proposes a new method for robust SLAM and tree mapping using low-resolution LiDAR sensors in forestry conditions. Our method relies on tree detection to perform scan registration and pose correction using only low-resolution LiDAR sensors (16Ch, 32Ch) or narrow field of view Solid State LiDARs without additional sensory modalities like GPS or IMU. We evaluate our approach on three datasets, including two private and one public dataset, and demonstrate improved navigation accuracy, scan registration, tree localization, and tree diameter estimation compared to current approaches in forestry machine automation. Our results show that the proposed method yields robust scan registration using detected trees, outperforming generalized feature-based registration algorithms like Fast Point Feature Histogram, with an above 3 m reduction in RMSE for the 16Chanel LiDAR sensor. For Solid-State LiDAR the algorithm achieves a similar RMSE of 3.7 m. Additionally, our adaptive pre-processing and heuristic approach to tree detection increased the number of detected trees by 13% compared to the current approach of using fixed radius search parameters for pre-processing. Our automated tree trunk diameter estimation method yields a mean absolute error of 4.3 cm (RSME = 6.5 cm) for the local map and complete trajectory maps.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3