Mobile Laser Scanning Data Collected under a Forest Canopy with GNSS/INS-Positioned Systems: Possibilities of Processability Improvements

Author:

Čeňava Juraj1,Tuček Ján1ORCID,Chudá Juliána2,Koreň Milan1ORCID

Affiliation:

1. Department of Forest Resource Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovakia

2. Department of Forest Harvesting, Logistics and Ameliorations, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovakia

Abstract

GNSS/INS-based positioning must be revised for forest mapping, especially inside the forest. This study deals with the issue of the processability of GNSS/INS-positioned MLS data collected in the forest environment. GNSS time-based point clustering processed the misaligned MLS point clouds collected from skid trails under a forest canopy. The points of a point cloud with two misaligned copies of the forest scene were manually clustered iteratively until two partial point clouds with the single forest scene were generated using a histogram of GNSS time. The histogram’s optimal bin width was the maximum bin width used to create the two correct point clouds. The influence of GNSS outage durations, signal strength statistics, and point cloud parameters on the optimal bin width were then analyzed using correlation and regression analyses. The results showed no significant influence of GNSS outage duration or GNSS signal strength from the time range of scanning the two copies of the forest scene on the optimal width. The optimal bin width was strongly related to the point distribution in time, especially by the duration of the scanned plot’s occlusion from reviewing when the maximum occlusion period influenced the optimal bin width the most (R2 = 0.913). Thus, occlusion of the sub-plot scanning of tree trunks and the terrain outside it improved the processability of the MLS data. Therefore, higher stem density of a forest stand is an advantage in mapping as it increases the duration of the occlusions for a point cloud after it is spatially tiled.

Funder

ERDF

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3