A Novel Point Cloud Adaptive Filtering Algorithm for LiDAR SLAM in Forest Environments Based on Guidance Information

Author:

Yang Shuhang1ORCID,Xing Yanqiu1,Wang Dejun1ORCID,Deng Hangyu1

Affiliation:

1. Centre for Forest Operations and Environment, Northeast Forestry University, Harbin 150040, China

Abstract

To address the issue of accuracy in Simultaneous Localization and Mapping (SLAM) for forested areas, a novel point cloud adaptive filtering algorithm is proposed in the paper, based on point cloud data obtained by backpack Light Detection and Ranging (LiDAR). The algorithm employs a K-D tree to construct the spatial position information of the 3D point cloud, deriving a linear model that is the guidance information based on both the original and filtered point cloud data. The parameters of the linear model are determined by minimizing the cost function using an optimization strategy, and a guidance point cloud filter is subsequently constructed based on these parameters. The results demonstrate that, comparing the diameter at breast height (DBH) and tree height before and after filtering with the measured true values, the accuracy of SLAM mapping is significantly improved after filtering. The Mean Absolute Error (MAE) of DBH before and after filtering are 2.20 cm and 1.16 cm; the Root Mean Square Error (RMSE) values are 4.78 cm and 1.40 cm; and the relative RMSE values are 29.30% and 8.59%. For tree height, the MAE before and after filtering are 0.76 m and 0.40 m; the RMSE values are 1.01 m and 0.50 m; the relative RMSE values are 7.33% and 3.65%. The experimental results validate that the proposed adaptive point cloud filtering method based on guided information is an effective point cloud preprocessing method for enhancing the accuracy of SLAM mapping in forested areas.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3