Effect of Al Concentration on Structural, Optical and Electrical Properties of (Gd, Al) Co-Doped ZnO and Its n-ZnO/p-Si (1 0 0) Heterojunction Structures Prepared via Co-Sputtering Method

Author:

Raship Nur Amaliyana1,Tawil Siti Nooraya Mohd12ORCID,Nayan Nafarizal3ORCID,Ismail Khadijah1

Affiliation:

1. Department of Electrical and Electronic Engineering, Universiti Pertahanan Nasional Malaysia (UPNM), Sungai Besi 57000, Kuala Lumpur, Malaysia

2. Center for Tropicalisation, Universiti Pertahanan Nasional Malaysia (UPNM), Sungai Besi 57000, Kuala Lumpur, Malaysia

3. Microelectronic and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja 86400, Johor, Malaysia

Abstract

Heterojunction structures of n-ZnO/p-Si were prepared through the growth of undoped ZnO and (Gd, Al) co-doped ZnO films onto p-type Si (1 0 0) substrates, using a co-sputtering method. The structural and optical properties of the Gd-doped ZnO films were studied as a function of different Al doping concentrations. The X-ray diffraction profiles indicated that the films had a nanocrystalline structure of ZnO with a (0 0 2) preferential orientation. An increase in the Al doping concentration deteriorated the (0 0 2) diffraction peak intensity. The transmittance measurements in the UV–Vis wavelength range indicated that the film’s optical gap increased with increase in Al doping concentration. The heterojunction parameters were evaluated using the current–voltage (I-V) characterization carried out of the fabricated n-ZnO/p-Si heterostructure, in dark conditions at room temperature. From these measurements, the n-ZnO-based DMS/p-Si heterojunction diode with the use of (Gd, Al) co-doped ZnO film showed the lowest leakage current of 1.28 × 10−8 A and an ideality factor η of 1.11, close to the ideal diode behavior of η = 1, compared to the n-Gd-doped ZnO/p-Si and n-undoped ZnO/p-Si heterojunction diodes.

Funder

The Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3