Effect of Co-Doping of Al3+, In3+, and Y3+ on the Electrical Properties of Zinc Oxide Varistors under Pre-Synthesizing BiSbO4

Author:

Xu Bo1,Wang Lei1,Yang Mengfan1,Xiang Yu1,Liu Lingyun12

Affiliation:

1. School of Science, Hubei University of Technology, Wuhan 430068, China

2. Hubei Collaborative Innovation Center for Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China

Abstract

Under the premise of using the solid-phase method to pre-sinter Bi2O3 and Sb2O3 into BiSbO4 as a substitute for equal amounts of Bi2O3 and Sb2O3 in the formula, the effects of co-doping with In(NO3)3, Al(NO3)3, and Y(NO3)3 on the microstructure and electrical properties of ZnO varistors were studied. The experimental results show that with an increase in In3+-doped molar concentration, the leakage current of the ZnO varistor shows a rapid decrease and then a slow increase trend. However, the nonlinear coefficient is the opposite of it. With the combined effect of the rare earth element Y3+, the average grain size is significantly reduced, which leads to an increase in the voltage gradient. At the same time, a certain amount of doped In3+ and Al3+ is dissolved into the grains, resulting in a decrease in grain resistance and thus a low level of residual voltage. The varistor with 0.6 mol% In3+, 0.1 mol% Al3+, and 0.9 mol% Y3+ doping ratios exhibits excellent overall performance. The nonlinear coefficient is 62.2, with the leakage current being 1.46 µA/cm2 and the voltage gradient being 558 V/mm, and the residual voltage ratio is 1.73. The prepared co-doped ZnO varistors will provide better protection for metal oxide surge arresters.

Funder

Hubei Key R&D Program Project

Publisher

MDPI AG

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3