A Non-Flat Terrain Biped Gait Planner Based on DIRCON

Author:

Chen Boyang,Zang Xizhe,Zhang Yue,Gao LiangORCID,Zhu Yanhe,Zhao Jie

Abstract

Various constraints exist in bipedal movement. Due to the natural ability of effectively handling constraints, trajectory optimization has become one of the mainstream methods in biped gait planning, especially when constraints become much more complex on non-flat terrain. In this paper, we propose a multi-modal biped gait planner based on DIRCON, which can generate different gaits for multiple, non-flat terrains. Firstly, a virtual knot is designed to model the state transitions when the swing foot contacts terrain and is inserted as the first knot of the target trajectory of the current support phase. Thus, a complete gait or multi-modal gaits sequence can be generated at one time. Then, slacked complementary constraints, which can avoid undesired trajectories, are elaborated to describe the coupling relationships between terrain information and bipedal motion for trajectory optimization based gait planning. The concrete form of the gait planner is also delivered. Finally, we verify the performance of the planner, as well as the structural design of our newly designed biped robot in CoppeliaSim through flat terrain walking, stairs terrain walking and quincuncial piles walking. The three experiments show that the gaits planned by the proposed planner can enable the robot to walk stably over non-flat terrains, even through simple PD control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3