Symmetrical Efficient Gait Planning Based on Constrained Direct Collocation

Author:

Chen Boyang1,Zang Xizhe1,Zhang Yue1,Gao Liang1ORCID,Zhu Yanhe1,Zhao Jie1

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

Abstract

Biped locomotion provides more mobility and effectiveness compared with other methods. Animals have evolved efficient walking patterns that are pursued by biped robot researchers. Current researchers have observed that symmetry is a critical criterion to achieve efficient natural walking and usually realize symmetrical gait patterns through morphological characteristics using simplified dynamic models or artificial priors of the center of mass (CoM). However, few considerations of symmetry and energy consumption are introduced at the joint level, resulting in inefficient leg motion. In this paper, we propose a full-order biped gait planner in which the symmetry requirement, energy efficiency, and trajectory smoothness can all be involved at the joint level, and CoM motion is automatically determined without any morphological prior. In order to achieve a symmetrical and efficient walking pattern, we first investigated the characteristic of a completely symmetrical gait, and a group of nearly linear slacked constraints was designed for three phases of planning. Then a Constrained Direct Collocation (DIRCON)-based full-order biped gait planner with a weighted cost function for energy consumption and trajectory smoothness is proposed. A dynamic simulation with our newly designed robot model was performed in CoppliaSim to test the planner. Physical comparison experiments on a real robot device finally validated the symmetry characteristic and energy efficiency of the generated gait. In addition, a detailed presentation of the real biped robot is also provided.

Funder

Major Research Plan of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3