Online Running-Gait Generation for Bipedal Robots with Smooth State Switching and Accurate Speed Tracking

Author:

Meng Xiang1ORCID,Yu Zhangguo123ORCID,Chen Xuechao123ORCID,Huang Zelin1ORCID,Dong Chencheng1,Meng Fei123ORCID

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China

3. Beijing Advanced Innovation Center for Intelligent Robotics and Systems, Beijing Institute of Technology, Beijing 100081, China

Abstract

Smooth state switching and accurate speed tracking are important for the stability and reactivity of bipedal robots when running. However, previous studies have rarely been able to synthesize these two capabilities online. In this paper, we present an online running-gait generator for bipedal robots that allows for smooth state switching and accurate speed tracking. Considering a fluctuating height nature and computational expediency, the robot is represented by a simplified variable-height inverted-pendulum (VHIP) model. In order to achieve smooth state switching at the beginning and end of running, a segmented zero moment point (ZMP) trajectory optimization is proposed to automatically provide a feasible and smooth center-of-mass (CoM) trajectory that enables the robot to stably start or stop running at the given speed. To accurately track online the desired speed during running, we propose an iterative algorithm to compute target footholds, which allows for the robot to follow the interactive desired speed after the next two steps. Lastly, a numerical experiment and the simulation of online variable speed running were performed with position-controlled bipedal robot BHR7P, and the results verified the effectiveness of the proposed methods.

Funder

National Natural Science Foundation of China

111 Project

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3