Macroscopic Spray Behavior of a Single-Hole Common Rail Diesel Injector Using Gasoline-Blended 5% Biodiesel

Author:

Thongchai Sakda,Lim Ocktaeck

Abstract

This research studies the macroscopic spray structure from a single-hole common rail diesel injector using gasoline-blended 5% biodiesel for use in compression ignition engines. To reduce the NOX/PM trade-off emissions, researchers are investigating gasoline used in compression ignition engines, called gasoline compression ignition. As a result that gasoline is injected directly into the combustion chamber, its spray field has a significant effect on combustion and emissions. Due to its low lubricity, gasoline is blended with biodiesel 5%, as a lubricity enhancer, to prevent the failure of the high-pressure injection system. The macroscopic spray structures of this gasoline blend were investigated Schlieren photography and planar laser-induced fluorescence-particle image velocimetry. Injection pressure was handled by a conventional common rail system, while ambient pressure was controlled by supplying nitrogen into the constant-volume combustion chamber. The effects of injection pressure and ambient pressure on the gasoline spray elucidated by Planar laser-induced fluorescence coupled with particle-image velocimetry (PLIF-PIV) imagery and comparisons with variations in neat diesel spray. In addition, the flow field of gasoline spray that formed vortexes and vorticity was characterized. The results show that the injection pressure and back pressure had the same effects on the gasoline spray structure, in terms of the penetration tip and cone angle, as on the diesel spray. However, the injection pressure had a greater effect on the diesel spray than the gasoline at low ambient pressure due to the occurrence of cavitation. Moreover, the images show the remarkable turbulent structure of gasoline spray and indicate air entrainment at the spray tip region.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3