Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting

Author:

Ding CanORCID,Zhou YiyuanORCID,Ding QingchangORCID,Li Kaiming

Abstract

The optimal utilization of wind power and the application of carbon capture power plants are important measures to achieve a low-carbon power system, but the high-energy consumption of carbon capture power plants and the uncertainty of wind power lead to low-carbon coordination problems during load peaks. To address these problems, firstly, the EEMD-LSTM-SVR algorithm is proposed to forecast wind power in the Belgian grid in order to tackle the uncertainty and strong volatility of wind power. Furthermore, the conventional thermal power plant is transformed into an integrated carbon capture power plant containing split-flow and liquid storage type, and the low-carbon mechanism of the two approaches is adequately discussed to give the low-carbon realization mechanism of the power system. Secondly, the mathematical model of EEMD-LSTM-SVR algorithm and the integrated low-carbon economic dispatch model are constructed. Finally, the simulation is verified in a modified IEEE-39 node system with carbon capture power plant. Compared with conventional thermal power plants, the carbon emissions of integrated carbon capture plants will be reduced by 78.248%; the abandoned wind of split carbon capture plants is reduced by 53.525%; the total cost of wind power for dispatch predicted using the EEMD-LSTM-SVR algorithm will be closer to the actual situation, with a difference of only USD 60. The results demonstrate that the dispatching strategy proposed in this paper can effectively improve the accuracy of wind power prediction and combine with the integrated carbon capture power plant to improve the system wind power absorption capacity and operational efficiency while achieving the goal of low carbon emission.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning in Carbon Neutrality Forecasting;Journal of Organizational and End User Computing;2024-01-17

2. Low Carbon Dispatch Strategy for Power System Based on Spatio-Temporal Distribution of Flexibility Resources;2023 IEEE 4th China International Youth Conference On Electrical Engineering (CIYCEE);2023-12-08

3. Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction;International Journal of Electrical Power & Energy Systems;2023-12

4. DRL based low carbon economic dispatch by considering power transmission safety limitations in internet of energy;Internet of Things;2023-12

5. Construction of an Optimized Configuration Model for Wind Power System Energy Storage Based on OOB-GWO-SVR;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3