With the growing urgency of global climate change, carbon neutrality, as a strategy to reduce greenhouse gas emissions into the atmosphere, is increasingly seen as a critical solution. However, current forecasting models still face significant challenges and limitations in accurately and effectively predicting carbon emissions and their associated effects. These challenges largely stem from the complexity of carbon emission data and the interplay of anthropogenic and natural factors. To overcome these obstacles, the authors introduce an advanced forecasting model, the SSA-Attention-BIGRU network. This model ingeniously integrates an external attention mechanism, bidirectional GRU, and SSA components, allowing it to synthesize various key factors and enhance prediction accuracy when forecasting carbon neutrality trends. Through experiments on multiple datasets, the results demonstrate that, compared to other popular methods, the SSA-Attention-BIGRU network significantly excels in prediction accuracy, robustness, and reliability.