LCA-Based Regional Distribution and Transference of Carbon Emissions from Wind Farms in China

Author:

Bi XintianORCID,Yang Jin,Yang Siyuan

Abstract

As a clean form of energy utilization, wind power is important for alleviating climate change. Although no direct carbon emissions occur in wind power generation, there exist upstream carbon emissions from manufacturing and installation, which have indirect effects on both the locations of wind farms and areas involved in upstream production and manufacturing. In this paper, based on Input–Output based Life Cycle Analysis (IO-LCA), we explored the lifetime carbon emissions of 378 wind farms in China that were still in operation in 2015. The regional distributions of carbon emissions from wind farms during the whole lifetime were depicted. The embodied carbon emission transfers from the location of the wind farm operation to upstream turbine manufacturing regions were traced. The net emission reduction benefits among regions were also calculated. Results show that carbon emissions mainly distribute in Liaoning, Inner Mongolia, and Tianjin in the turbine manufacturing stage, with a total amount of 3.36 MT. Inner Mongolia contributes the largest carbon emissions (5.94 MT) in the farm construction stage. Inner Mongolia has transferred about 0.99 MT carbon emissions to itself and has the largest net emission reduction. Recognizing the carbon emission transfer of wind farms and dividing the carbon emission reduction responsibilities among regions may shed light on supply chain carbon emission reduction and provincial carbon quota allocation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference40 articles.

1. Future of Wind-Irenahttps://irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019_summ_EN.PDF?la=en&hash=D07089441980EBABC7F4BED63B62C83820C18724

2. Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China

3. Carbon footprint of wind turbine by life cycle assessment;Yang;Acta Sci. Circumstantiae,2015

4. Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study

5. A comparative analysis of the life cycle environmental emissions from wind and coal power: Evidence from China

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3