Abstract
Australia is one of the leading countries in energy transition, and its largest power system is intended to securely operate with up to 75% of variable renewable generation by 2025. High-inertia synchronous condensers, battery energy storage systems, and grid-forming converters are some of the technologies supporting this transformation while facilitating the secure operation of the grid. Synchronous condensers have enabled 2500 MW of solar and wind generation in the state of South Australia, reaching minimum operational demands of ≈100 MW. Grid-scale battery energy storage systems have demonstrated not only market benefits by cutting costs to consumers but also essential grid services during contingencies. Fast frequency response, synthetic inertia, and high fault currents are some of the grid-supporting capabilities provided by new developments that strengthen the grid while facilitating the integration of new renewable energy hubs. This manuscript provides a comprehensive overview, based on the Australian experience, of how power systems are overcoming expected challenges while continuing to integrate secure, low cost, and clean energy.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference71 articles.
1. World Energy Investment,2021
2. Global Landscape of Renewable Energy Finance,2018
3. Stability Definitions and Characterization of Dynamic Behavior in Systems with High Penetration of Power Electronic Interfaced Technologies,2020
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献