Abstract
In this work, we emulate biological synaptic properties such as long-term plasticity (LTP) and short-term plasticity (STP) in an artificial synaptic device with a TiN/TiO2/WOx/Pt structure. The graded WOx layer with oxygen vacancies is confirmed via X-ray photoelectron spectroscopy (XPS) analysis. The control TiN/WOx/Pt device shows filamentary switching with abrupt set and gradual reset processes in DC sweep mode. The TiN/WOx/Pt device is vulnerable to set stuck because of negative set behavior, as verified by both DC sweep and pulse modes. The TiN/WOx/Pt device has good retention and can mimic long-term memory (LTM), including potentiation and depression, given repeated pulses. On the other hand, TiN/TiO2/WOx/Pt devices show non-filamentary type switching that is suitable for fine conductance modulation. Potentiation and depression are demonstrated in the TiN/TiO2 (2 nm)/WOx/Pt device with moderate conductance decay by application of identical repeated pulses. Short-term memory (STM) is demonstrated by varying the interval time of pulse inputs for the TiN/TiO2 (6 nm)/WOx/Pt device with a quick decay in conductance.
Funder
National Research Foundation of Korea
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献