In-Situ Ellipsometric Study of the Optical Properties of LTL-Doped Thin Film Sensors for Copper(II) Ion Detection

Author:

Cody DervilORCID,Babeva TsvetankaORCID,Madjarova Violeta,Kharchenko Anastasia,Sabad-e-Gul ,Mintova SvetlanaORCID,Barrett Christopher J.,Naydenova Izabela

Abstract

Optical sensors fabricated in zeolite nanoparticle composite films rely on changes in their optical properties (refractive index, n, and thickness, d) to produce a measurable response in the presence of a target analyte. Here, ellipsometry is used to characterize the changes in optical properties of Linde Type L (LTL) zeolite thin films in the presence of Cu2+ ions in solution, with a view to improving the design of optical sensors that involve the change of n and/or d due to the adsorption of Cu2+ ions. The suitability of two different ellipsometry techniques (single wavelength and spectroscopic) for the evaluation of changes in n and d of both undoped and zeolite-doped films during exposure to water and Cu2+-containing solutions was investigated. The influence of pre-immersion thermal treatment conditions on sensor response was also studied. Due to the high temporal resolution, single wavelength ellipsometry facilitated the identification of a Cu2+ concentration response immediately after Cu2+ introduction, indicating that the single wavelength technique is suitable for dynamic studies of sensor–analyte interactions over short time scales. In comparison, spectroscopic ellipsometry produced a robust analysis of absolute changes in film n and d, as well as yielding insight into the net influence of competing and simultaneous changes in n and d inside the zeolite-doped films arising due to water adsorption and the ion exchange of potassium (K+) cations by copper (Cu2+).

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3