Preparation, Characterization, Release and Antibacterial Properties of Cinnamon Essential Oil Microcapsules

Author:

Liu Huimin12ORCID,Zhao Zhiwei1,Xu Wenying1,Cheng Mingyan1,Chen Yinfeng1,Xun Menghan1,Liu Qinglei1,Wang Wei12ORCID

Affiliation:

1. School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China

2. Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China

Abstract

In this study, the antibacterial microcapsules of cinnamon essential oil (CEO) were prepared by complex condensation method. Chitosan quaternary ammonium salt (HACC) combined with gum arabic (GA) was selected as the coated wall material. The optimal preparation conditions of CEO microcapsules (CMSs) were determined by response surface methodology (RSM): the core/wall mass ratio was 1:1, the pH value was 4.5, the mass concentration of CaCl2 was 0.7 wt% and the actual encapsulation rate of microcapsules was 90.72% ± 1.89%. The morphology, size, composition and thermal stability of the prepared CMSs were characterized by scanning electron microscopy (SEM), laser particle size analysis (LPDA), Fourier transform infrared spectroscopy (FTIR), thermogravimetric differential thermal analysis (TG–DTA) and differential scanning calorimetry (DSC). In addition, the in vitro drug release and antibacterial properties of CMS were also evaluated. The results showed that CMS was spherical, with an average particle size of 6.31 µm. The obvious weight loss occurred at 269 °C and the corresponding DSC curve had an obvious exothermic peak at 265.5 °C, which had an increase compared with CEO. Microcapsules can achieve slow release, with the lowest and highest release rates being 19.66% and 49.79%, within 30 days. The drug release curve of essential oil of microcapsules was consistent with a first-order release model named ExpDec1. Based on the above research results, the CMS can effectively improve the stability of essential oil, achieve slow release and prolong the antibacterial effect, indicating its potential applications in food, cosmetics and medicine.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3