Affiliation:
1. Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Sciences, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, People's Republic of China
Abstract
Marine biological fouling is a widespread phenomenon encountered by various oceanic ships and naval vessels, resulting in enormous economic losses. Herein, novel 4,5-dichloro-2-octyl-isothiazolone@sodium alginate/chitosan microcapsules (DCOIT@ALG/CS) were prepared through composite gel method using DCOIT as core materials, ALG and CS as shells, and CaCl
2
as the cross-linking agent. The formed microcapsules (MCs) with Ag nanoparticles (AgNPs) were then filled in UV-curable polysiloxane (UV-PDMS), followed by UV irradiation to yield UV-PDMS/microcapsules/AgNPs (UV-PDMS/MCs/Ag) composite coatings. The constructed micro–nano dual-scale surface using the MCs and AgNPs improved the antifouling and antibacterial properties of UV-PDMS/MCs/Ag coatings. The as-obtained UV-PDMS/MCs/Ag coatings exhibited a static contact angle of about 160°, shear strength of 2.24 MPa, tensile strength of 3.32 MPa and elongation at break of 212%. The synergistic bacteriostatic effects of DCOIT and AgNPs in UV-PDMS/MCs/Ag coatings resulted in a bactericidal rate of 200 μg ml
−1
towards
Escherichia coli
and
Staphylococcus aureus
with saturation at 100% within 10 min. In sum, the proposed composite coatings look promising for future marine transportation, pipeline networks and undersea facilities.
Funder
Key Scientific Research Project of the Education Department of Shaanxi Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献