Study on the Degradation Performance of AlGaN-Based Deep Ultraviolet LEDs under Thermal and Electrical Stress

Author:

Gong Mingfeng1,Sun Xuejiao2,Lei Cheng1,Liang Ting1,Li Fengchao1,Xie Yu1,Li Jinmin13,Liu Naixin2

Affiliation:

1. State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030000, China

2. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

3. Shanxi Zhongke Lu’an Ultraviolet Optoelectronics Technology Co., Ltd., Changzhi 046000, China

Abstract

AlGaN-based deep-ultraviolet (DUV) LEDs could realize higher optical power output when adopting a p-AlGaN contact layer instead of a p-GaN contact layer. However, this new type DUV LEDs exhibit poor reliability. Thus, this study thoroughly investigates the degradation behaviors of AlGaN-based DUV LEDs with a p-AlGaN contact layer through different aging tests, including single thermal stress, single electrical stress with air-cooling, single electrical stress, and thermoelectric complex stress. It can be found that both high temperature and large working current play crucial roles in accelerating the degradation of optoelectronic properties of the DUV LEDs, and the single high thermal stress without electrical stress can also bring obvious performance degradation to the DUV LEDs, which is a significantly different finding from previous studies. This is because thermal stress on DUV LED could bring some metal electrode elements entering the p-AlGaN layer. Thus, the degradation of optical and electrical properties under the thermal and electrical stress could be not only attributed to the degradation of the device’s ohmic contacts, but also due to the metal electrode elements entering the p-AlGaN layer through thermal diffusion, leading to the generation of tunneling current and the generation of defects within or around the active region. Despite that the peak wavelengths of the DUV LEDs remained stable, the turn-on voltage and series resistance increased. Particularly worth mentioning is that the value of the optical power degradation under thermoelectric conditions is larger than the sum of the single thermal and single electrical optical power degradation, which is a result of the mutual reinforcement of thermal and electrical stresses to exacerbate the defect generation and ohmic contact degradation. Based on the study above, preparing p-AlGaN layers with hyperfine gradient aluminum fractions and reducing the junction temperature may help to improve the reliability of AlGaN-based DUV LEDs with the p-AlGaN contact layer.

Funder

the National Key R&D Program of China

the Key R&D Project of Shanxi Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3