Polygonal Wear Mechanism of High-Speed Train Wheels Based on Lateral Friction Self-Excited Vibration

Author:

Dong YahongORCID,Cao ShuqianORCID

Abstract

This work details research on the formation mechanism of wheel polygonalization in high-speed trains and its effect factors by numerical modeling in order to prevent the increasingly prevalent problem of wheel polygonal wear. The lateral self-excited vibration model of a wheel was developed using the LuGre friction model and self-excited vibration theory. The properties of wheel self-excited vibration and the crucial condition of Hopf bifurcation were investigated; the process of wheel polygonal wear was simulated and the results were validated using field tracking data. The results demonstrated that periodic self-excited vibration generated by Hopf bifurcation is a required condition for polygonal wheel attrition at a given speed. The wheel’s polygonal wear has the following characteristics: “Constant speed—Self-excited—Fixed frequency—Divisible.” The order of the polygon is determined by the ratio of the wheel lateral self-excited vibration frequency to its rotational frequency. Wheel polygonal wear was caused by the vertical dynamic force of the wheel rail. The findings of the study can serve as a theoretical foundation for the prediction and reduction of wheel polygonal wear.

Funder

National Natural Science Foundation of PRC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference20 articles.

1. A Review of the Effects of Out-Of-Round Wheels on Track and Vehicle Components

2. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle Wheels;Jin;J. Southwest Jiaotong Univ.,2018

3. Analysis of Polygonal Wear Characteristics of Chinese High-Speed Train Wheels;Wang;J. Southwest Jiaotong Univ.,2021

4. Measurement and assessment of out-of-round electric locomotive wheels

5. Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3