Measuring Methods of Radius of Curvature and Tread Circle-Fitting Studies for Railway Wheel Profiles

Author:

Gao Chunfu12,Bao Siyuan12,Zhou Chongqiu12,Sun Jianfeng12,He Xinsheng12

Affiliation:

1. College of engineering, Zhejiang Normal University, Jinhua 321004, China

2. Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Jinhua 321004, China

Abstract

A railway wheel profile consists of short arcs with complex radii of curvature, and wheel wear leads to changes in the profile’s radius of curvature that ultimately affects the dynamic performance of the train. To track the evolution of in-service wheel profile curves, the radii of curvature of new foundry wheel profiles need to be measured. This study proposes a series of algorithms and calculation methods for measuring the radius of curvature of wheel profiles. Firstly, the curvature was estimated with the U-chord method, and the segment points were located. Secondly, the discrete derivative method and Two-Arcs Tangency Constrain (TATC) method were used to calculate the radius of curvature and the fitting circle radius, respectively. The experimental results of the three types of profiles showed that the wheel profile curves were precisely divided according to the estimated curvature method and that the maximum errors of the calculated results compared with standard values by the discrete derivative method and TATC method were 2.50% and 0.42%, respectively. Furthermore, the two measurement methods’ performances and repeated experiments were used to analyze the uncertainty.

Funder

public welfare research projects in Zhejiang Province

Key Research and Development Program of Zhejiang Province

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3