Kinematic Comparisons of Hybrid Mechanisms for Bone Surgery: 3-PRP-3-RPS and 3-RPS-3-PRP

Author:

Reinaldo Christopher,Phu Sinh NguyenORCID,Essomba TerenceORCID,Nurahmi LatifahORCID

Abstract

This paper proposes an approach to derive the Jacobian matrix of a hybrid mechanism by applying a velocity operator to the transformation matrix. This Jacobian matrix is capable of deducing hybrid singularities, which cannot be identified by using the screw-based Jacobian or velocity-based Jacobian. The transformation matrix was obtained based on the algebraic geometry approach, and it becomes the key point since it was used to not only formulate the Jacobian matrix, but also to define the motion type of hybrid mechanisms. In this paper, two hybrid mechanisms were investigated, which were composed of two distinct parallel mechanisms mounted in series. Hybrid Mechanisms 1 and 2 were composed of 3-PRP-3-RPS and 3-RPS-3-PRP (the underlined P is an actuated joint), respectively. The motion types of Hybrid Mechanisms 1 and 2 were determined from the product of the transformation matrices of the 3-PRP and 3-RPS parallel mechanisms, and vice versa. The developed method was employed to establish the Jacobian matrix to which the conditioning index was applied. Therefore, the kinematic performances of the two hybrid mechanisms can be compared for a given bone surgery trajectory within the workspace. It turns out that Hybrid Mechanism 1 has superior performance than that of Mechanism 2, which indicates that Mechanism 1 is better at transmitting power to the moving platform.

Funder

L’Oreal for Women in Science 2020 grant

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3