A Hybrid Mechanism-Based Robot for End-Traction Lower Limb Rehabilitation: Design, Analysis and Experimental Evaluation

Author:

Wang Lipeng,Tian Junjie,Du Jiazheng,Zheng Siyuan,Niu JianyeORCID,Zhang Zhengyan,Wu Jiang

Abstract

Conventional lower-limb rehabilitation robots cannot provide in-time rehabilitation training for stroke patients in the acute stage due to their large size and mass as well as their complex wearing process. Aiming to solve the problems, first, a novel hybrid end-traction lower-limb rehabilitation robot (HE-LRR) was designed as the lower-limb rehabilitation requirement of patients in the acute stage, in this paper. The usage of (2-UPS + U)&(R + RPS)&(2-RR) hybrid mechanism and a mirror motion actuator had the advantages of compact structure, large working space and short wearing time to the HE-LRR. Then, the mobility of the HE-LRR was calculated and the motion property was analyzed based on screw theory. Meanwhile, the trajectory planning of the HE-LRR was carried out based on MOTOmed® motion training. Finally, the motion capture and surface electromyography (sEMG) signal acquisition experiments in the MOTOmed motion training were performed. The foot trajectory experimental effect and the lower-limb muscle groups activation rules were studied ulteriorly. The experimental results showed that the HE-LRR achieved good kinematic accuracy and lower limb muscle groups training effect, illustrating that the HE-LRR possessed good application prospects for the lower-limb rehabilitation of patients in the acute stage. This research could also provide a theoretical basis for improving the standardization and compliance of lower-limb robot rehabilitation training.

Funder

National Key Research and Development Program of China

Science and Technology (S&T) Program of Hebei

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3