Abstract
In the navigation of underwater robots, large ocean current disturbance often causes significant tracking errors. To better resist ocean current disturbance, the hydrodynamic characteristics of the spherical underwater robot are studied, and a model predictive control strategy based on adaptive model parameters is proposed, according to these characteristics. Firstly, the hydrodynamic characteristics of the robot under static water and constant flow disturbance were obtained and analyzed by the computational fluid dynamics method. Then, the dynamic models of the robot under different disturbances could be calculated from the data obtained, based on the least square method. Finally, an adaptive model predictive control (AMPC) strategy, with an ocean current observer, was designed, based on the dynamic models. When the current disturbance velocity was twice the robot velocity, the proposed strategy reduced the tracking error by 39% and 42% in X and Y directions, respectively. In addition, the hydrodynamic characteristics were verified by experiments.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献