Abstract
The flow field structure in the pilot stage of the electro-hydraulic servo valve is small and complex, and the extreme temperature environment will aggravate the self-excited oscillation, resulting in a decrease in the control accuracy of the servo valve. With the increase in temperature, the size of the orifice, the temperature characteristics of the fluid and the pressure loss in the flow pipe will influence the characteristics of the pilot stage. Considering the influence of temperature and pressure loss, a theoretical mathematical model is established to describe the flow force in the pilot stage. To verify the accuracy of the theoretical model, CFD simulations of the flow force at different inlet pressures and deflection positions and temperatures are analyzed in this paper. As the temperature rises, the oil viscosity rapidly decreases, which results in the flow force acting on the flapper increasing with the temperature. When the temperature exceeds 50 °C, the effect of oil viscosity is small, and the flow force tends to decrease slightly with the combined effect. As the supply oil pressure increases and the flapper moves toward the nozzle, the flow force acting on the flapper increases, and the trend is consistent with the CFD simulation results. An experimental device is designed, including establishing the experimental conditions and measuring the flow force to validate the theoretical model and to observe the cavitation phenomenon of the pilot stage.
Funder
National Natural Science Foundation of China
Foundation of Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Beijing Jiaotong University, Ministry of Education, China
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献