Abstract
The precision spool valve is the core component of the electro-hydraulic servo control system, and its performance has an important influence on the flight control of aviation and aerospace products. The non-uniform surface topography error causes a non-uniform mating gap field inside the spool valve, which causes oil leakage and leads to deterioration of the spool valve performance. However, the current oil leakage calculation method only considers the influence of size errors, which is not comprehensive. Thus, how to characterize the mating behavior of the spool valve and its effect on oil leakage with consideration of surface topography errors is the key to evaluating the performance of the spool valve. This paper proposes a new way of analyzing the mating performance of precision spool valves, which considers the surface topography errors based on digital twin technology. Firstly, a general framework for the analysis of mating performance of precision spool valve based on a digital twin is proposed. Then, key technologies of assembly interface geometry modeling, matching behavior modeling and performance analysis are studied. Finally, a quantitative correlation between the mating parameters and the oil leakage of the precision spool valve is revealed. The method is tested on a practical case. This proposed method can provide theoretical support for the accurate prediction and evaluation of the mating performance of the precision spool valve.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献