Co-Simulation Modeling and Multi-Objective Optimization of Dynamic Characteristics of Flow Balancing Valve

Author:

Hou Jianjun12,Li Shuxun12,Pan Weiliang3,Yang Lingxia12

Affiliation:

1. School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China

2. Machinery Industry Pump Special Valve Engineering Research Center, Lanzhou 730050, China

3. Zhejiang Academy of Special Equipment Science, Hangzhou 310000, China

Abstract

The poor dynamic characteristics of the flow balance valve used in a ship’s HVAC system are the main reasons for the hydraulic imbalance and high energy consumption of the system. A new adjustable dynamic flow balance valve structure is designed, which is composed of a self-operated pressure regulator and an electric V-shaped ball valve in series. When the V-shaped ball valve is fully opened at the 20 t/h flow level, the dynamic characteristics of the flow balance valve cannot meet the requirements. A new co-simulation method that combines MATLAB/Simulink and the UDF dynamic grid is proposed to study the dynamic characteristics of a flow balance valve with a 20 t/h flow rate under different pressure drop step signal interference. When the calculation of each micro-element time converges, the valve core motion parameters, the pressure boundary conditions, the valve core axial medium force, and the valve outlet flow are interactively transmitted in the two simulation environments. The discrepancy between the co-simulation and test results is less than 5%, which verifies the accuracy of the co-simulation model. Aiming at the most severe dynamic characteristic working condition where the pressure drop is stepped from 30 to 300 kPa, the influence of different structural parameters on the dynamic characteristics of the balance valve is analyzed. A new surrogate model combining RSM and RBF with the co-simulation method improves the optimization efficiency and fitting accuracy. To improve the convergence of the traditional NSGA-II algorithm, key structural parameters are optimized by combining the NSGA-II algorithm and SDR. The test results show that the dynamic characteristics of the optimized valve are improved, the discrepancy between the stabilized flow rate and 20 t/h does not exceed 4.5%, and the flow is relatively constant. Therefore, the proposed co-simulation and optimization method can be applied to the dynamic characteristic prediction of self-operated valves, such as dynamic flow balance valves, to provide guidance for developing high-precision self-operated valves.

Funder

National Natural Science Foundation of China

Double First-Class Key Program of Gansu Provincial Department of Education

Gansu Province Science and Technology Program Funding

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3