Human–Robot Interaction: A Review and Analysis on Variable Admittance Control, Safety, and Perspectives

Author:

Sharkawy Abdel-NasserORCID,Koustoumpardis Panagiotis N.ORCID

Abstract

Human–robot interaction (HRI) is a broad research topic, which is defined as understanding, designing, developing, and evaluating the robotic system to be used with or by humans. This paper presents a survey on the control, safety, and perspectives for HRI systems. The first part of this paper reviews the variable admittance (VA) control for human–robot co-manipulation tasks, where the virtual damping, inertia, or both are adjusted. An overview of the published research for the VA control approaches, their methods, the accomplished collaborative co-manipulation tasks and applications, and the criteria for evaluating them are presented and compared. Then, the performance of various VA controllers is compared and investigated. In the second part, the safety of HRI systems is discussed. The various methods for detection of human–robot collisions (model-based and data-based) are investigated and compared. Furthermore, the criteria, the main aspects, and the requirements for the determination of the collision and their thresholds are discussed. The performance measure and the effectiveness of each method are analyzed and compared. The third and final part of the paper discusses the perspectives, necessity, influences, and expectations of the HRI for future robotic systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference87 articles.

1. Human-Robot Interaction: Applications;Sharkawy,2021

2. A Survey on Applications of Human-Robot Interaction;Sharkawy;Sens. Transducers,2021

3. Cooperation of human and machines in assembly lines

4. Algorithmic Safety Measures for Intelligent Industrial Co-Robots;Liu;Proceedings of the IEEE International Conference on Robotics and Automation 2016,2016

5. Task Location for High Performance Human-Robot Collaboration

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3